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The approach suggested in [l, 21 is applied to the problem of the propagation of a plan longitudinal wave in an elastic medium 
containing a periodic system of rectangular defects. Explicit analytical representations for the scattering coefficients as well as 
a refined low-frequency solution are derived using a uniform approximation of the single-mode type. A comparison of the results 
with solutions obtained by other methods is given. 0 2003 Elsevier Ltd. All rights reserved. 

Earlier [l, 21 were used an analytical approach to solve the problem of the scattering of both a transverse 
wave and a longitudinal wave by a periodic array of rectangular obstacles. The use of analytical methods 
in the problem of wave propagation in an elastic medium with regularly distributed systems of defects 
is difficult, and hence such problems are generally analysed numerically by reducing them to infinite 
systems of algebraic equations [3,4]. It should also be noted that a periodic array of rectangular defects 
is equivalent to a screen of finite thickness with a periodic system of apertures. 

In [l] the antiplane problem of H-wave propagation was reduced to two independent integral 
equations on the aperture, and formulae for the scattering parameters were obtained as an explicit 
function of the frequency using an approximation that holds in the single-mode frequency range. A 
more difficult case, not previously considered, of the plane problem for the so-called P-type wave was 
analysed in [2]; there the problem was reduced to two 3 x 3 systems of integral equations along sections 
coinciding with the sides of the rectangular aperture, the solution of which would have enabled a 
complete analytical solution for the scattered wave field to be obtained. Only a direct numerical method 
was applied to this system, which enabled numerical values of all the scattering characteristics to be 
found [2]. 

The purpose of this paper is to obtain analytical results for the plane problem with rectangular 
scatterers in an elastic medium. The suggested single-mode method (developed in [5] for completely 
different problem), using the previously derived integral equations [2], is extended further here, and 
enables explicit formulae to be derived for the respective mechanical characteristics, as was done in 
[l] for the antiplane case. Furthermore, an improved approximation in the law-frequency case is given 
that is more exact than the trivial solution previously obtained [2, Section 41. The results of a numerical 
computation both for the problem of the single-mode approximation and for the low-frequency 
approximation are given. These results are compared with the exact numerical solution previously derived 
in [2]. 

1. FORMULATION OF THE PROBLEM AND REDUCTION 
TO INTEGRAL EQUATIONS 

We will consider an unbounded two-dimensional elastic medium (the case of plane strain) of constant 
unit density with an infinite system of rectangular defects distributed periodically along the vertical 
y-axis (Fig. 1). The period of the array is 2a, the clearance, i.e. the distance between two neighbouring 
defects, is 2b, and the length of the horizontal side of the ,defects is 21. A plane longitudinal wave is 
incident on the array with a displacement potential (pinC = erklx , propagating along the x axis (see Fig. 1, 
in which the direction of wave propagation is denoted by an arrow). 
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Fig. 1 

The common multiplier emrwt (where o is the angular frequency), implied in all functions occurring 
in the solution of the problem, can be neglected, assuming that the time-dependence of all the wave 
characteristics is harmonic. We note also that the natural symmetry and periodicity along the y axis 
enables us to confine our consideration of the problem to one typical layer ly 1 < a with a step-like 
narrowing of the width ly 1 c b and the length 21. 

We will write the governing equations of the problem, introducing the field of displacements 
u = (U.&C, y), ur(x, y), 0), as follows: 

the Lame relations 

the Helmholtz equations 

and the equations of state 

Acp + k:cp = 0, Ayt+k;y = 0 

(1.1) 

(1.2) 

=x --- (1.3) 

and add the following natural boundary-value conditions, which are satisfied inside the layer 

t,,( fL Y) = q&Y) = 0, b< IyI <a 

T,,(& fb) = b,(X, fb) = 0, 1x1 <I; Txy(X, *c-l) = uy(x, *:a) = 0, 1x1 > I (1.4) 

Thereafter, in all these equations cl and c2 are the longitudinal and transverse velocities of sound in 
the material considered and k1 and k2 are the corresponding wave numbers kl = o/c1 = k&c1. In this 
context the single-mode approximation corresponds to the frequency range 
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k, < k, < x/a (1.5) 

and means that, even though an infinite number of standing waves exists in the vicinity of the array in 
the medium, only a plane wave with a given wave number, corresponding to the velocity of the longitudinal 
wave in the given medium, can propagate over long distances. In fact the following asymptotic 
representation holds for the potentials cp and w in the far left and right zones of the layer 

t&(x, y) - eiklX + Re+, \yl(X, y) - 0, x+--m 

cp,( x, y) - Te?, Wrh Y) - 0, x + +- 

for the mode decomposition [2], in view of the fact that all wave numbers of higher order are positive. 
The constants R and T obviously define the reflection coefficient and the propagation constant. The 

purpose of this paper is to construct an explicit dependence of these coefficients on the frequency. 
It follows from results previously obtained [2, Section 31 that 

6 b 

R z-l- ~2j&9d~~ T = 

1 1-b 

-k2 1 &)dy 

1 1-b 

U-6) 

where g? (Y) and gi (~1, IY I < b are certain unknown functions, which are the solution of two 3 x 3 
systems of integral equations. 

For convenience we will assume 

g:(y) = g;(y) + g;(y), g;(y) = g;(y) r g;(y), Iyl c b, g:(x) = g:(x), 1x1 c 1 (1.7) 

where the physical meaning of the functions introduced functions is clear from the following definitions 

g;(Y) =0,(-L Y>. &Y) = o,(h Y)9 g:(Y) =&-~9 Y), g:(Y) = ~&, Y) 

1 
g,f(x) = $+, b) f u,(-x, 611 

Then both systems considered (one denoted by a superscript and the other by a subscript) can be written 
in the form Sti is the Kronecker delta) 

2 b 1 

I’= 1-b -1 

In this connection 18 of the kernels containing the wave numbers, are 

f 
K,,(Y) = 

f 
1 K*2(Y) = 2 c 2a,2 - t- 2q.r,ansin(a,y) + -$ $ 

ac2n = 1 n 

$sin(b.y) 
n 
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@Y) = &(Y) 

&(Y) = + c ~cos(a,y) + 5 g ${ ~}cos(b”y) 
ac2”=, n 2n-1 n n 

f 
&3(x, Y) = 3 $ (-1)n[(21~-k;)~-21gg-J{cos~x~}- 

2n - 1 n n 

K:,(x, 5) = zctg(k,b) - 
(2C; - C:)2k, 

2 bc:ctsin(2k,l) 
cos[k,w-5)1 

22 

4l$v,cth(w,b) - (2”;k2) crh(u,b) cos[l,(x-c)]+ 
n 1 

+ 3 ;: 

~,+W,(S) 

2n-1 + 
i 

2b$$p+2 + k;)Q,(x)T n - R n (5) 
k2 I 

Here 

{;} = {~},P,{~}W~ 

R; = 2p;p,sh(p;l)ch(p;1) - (2b:- k;)ch(&)sh($) 

Q,‘(x) = (2bjS- k;){ :pl }(&){ ;}(,;x) - (26: +k:){ ;; }(Pi?){ ;; }(+) 

W-9 

L,(x) = 
2b2p+p- 
=ch(p,x) - 

(2b: - k;)(2pz2 + k:)ch(p+x) 
n (1.10) 

sh(p,O 2sh(p;O 

sh(p,x) sh(p;x) 
T,(x) = --- 

sh(p,l) sh(p:O 
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a, = 3, b, = y, 1, = y, qn = ,,/m, r,, = in, p; = b,-k, 7 

p, = 6,-k,, v,, = Jr2 m, w, = dm, A,, = (2ai- kit -4aiq,r,, 

I-I; = (2b; - k;)2ch(p;l)sh(p;l) - 4b;p;p,sh(p;Z)ch(p;l); n = 1,2, . . . 

2. THE SINGLE-MODE APPROXIMATION AND EXPLICIT SOLUTIONS 

We will apply an approximation to the kernels (1.9) in which they will be represented in a form not 
containing the wave numbers. In this connection we will assume that: (1) 1 s a, i.e. the length of the 
rectangles does not exceed the lattice period, (2) the following approximate formulae hold 

q, = r,, = a,,, pi = b,, v,, = w, = I,, q,,r,, = af - (kf + ki)/2 

p&b;-(k;+k;)/2, v,,w,+(k;+k;)/2, n = 1,2,... 
(2.1) 

which are identical with the main terms of the asymptotic form of the corresponding expressions for 
large IZ in the domain of frequencies, defined by Eq. (1.5). The equations 

An = 2af(k: - kf), l-Ii = 2b;(k; - k;)sh(b,l)ch(b,l), n = 1,2, . . . (2.2) 

and also the analogous asymptotic approximations for all the other expressions appearing in the kernels, 
follow from Eq. (2.1). As an example we will only present two of them 

(21; - k;)2 
41,2w,cth(w,b) - v cth(v,b) = 2(k; - kf)l,cth(l,b) 

v,‘(x) = +(k: -k;,{ ;; }&O{ ;L }(b,x) 

(2.3) 

Note that, in the standard single-mode approximation, Eqs (2.1) hold only for IZ a 2, but must 
be retained in the exact form for the case n = 1. However, approximation (2.1) is more exact than the 
usual low-frequency approximation and is not reduced to the latter, since, for instance, we have 
rI/aI = 41 - (akJn)* for ak2 = n/4. Thus, the approximation considered in this paper should be called 
“almost single-mode”, but for simplicity we will retain the traditional term “single-mode approximation”. 

Both 3 x 3 systems can be reduced to a form in which the kernels are free from the frequency 
parameters ki and k2, taking into account the approximations assumed. The following tabulated series 
must be used for this 

w cWa,y) c n 
= -ln 2sinz , 

PI=1 I I 
C sin(a~Y) i sin(b~Y) = “‘24;bb’y, Iyl < za 

(2.4) 
n=l 

As a result the systems considered in the given single-mode approximation can be reduced to the 
form (in all the equations Iy 1 < b, 1x1 < l) 

_ c CWz; -r>l ,; HI 
b 

(b,O drl+ 
a-b 

I 4ab(ci - c:), 
&w(7) -Ywl- 

n=l 
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i c &I 1 W”Wb,q) 
-b “=I 

ch(b,x) 
ch(b,O 
sh (b,x) 
Wb,O 

ch(b,x) 
drl+ 2~&@‘1~ i (-l)“Wb,q) sh(b 1) 

-b “=I 1 
sh(b”xj 
n 
ch(b,l) 

(2.5) 

(2.7) 

where 

(G:, G: and Gi2 are certain unknown constants). It also should be noted that all kernels described are 
real and do not contain the frequency parameters kr and k2. 

When deriving Eqs (2.5)-(2.7) the terms in which the wave number and the space coordinate are 
present at the same time are the main difficulty, since an explicit separation of the frequency parameters 
is impossible in these terms. These functions were decomposed into Fourier series in which the standard 
single-mode approximation Ix 1 c I was then used to overcome this difficulty 

sin(k,x) = -Fsin(k,l) c (-1,” nsin(l,x) = 
“=I V” 

= -zsin(k,l) 
l2 

- Asin(l,x) + c (-ij (2.9) 
Vl 

m Asin( = sin(ktl)[T + ssin y] 
n=2 ” 

and similarly 1 t 1 < 21 
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sin(kll) 
cos(k,t) = 7- 

2k,fsin(k,l) m ( 1)” 

I l2 
“~,yw’“” = 

n (2.10) 

= sin(k,l)(x - $‘) 

Here the following summation formulae were used 

We will now write Eqs (2.5)-(2.7) in symbolic form (everywhere henceforth X’ denotes summation 
from j’ = 1 to j’ = 3) 

xKT,.gT = fi, j = 1,2,3 (2.11) 

and introduce auxiliary real functions hi (i = 1, 2, 3) as a solution of the following systems, which do 
not include the oscillation frequency 

Then, by virtue of the linearity, we obtain 

g; = 2ik, + 
actg(k,f) -ib _ _ 

2abk,c; 
GO]h, j + yG;(hij + $h;;) 

(2.12) 

(2.13) 

It is obvious that the constant G; (2.8) can be determined from Eq. (2.13) by integrating over the 
interval In 1 s 6, which leads to the expression 

G, = (2.14) 

in which the constants 
b 

HyI = I h,l(v)drl, i = 1,2,3 (2.15) 
-b 

do not contain the wave number. 
The (3 x 3) system corresponding to the superscript + is analysed similarly. 
We will introduce the following parameters, which depend on the frequency 

atg(kll) + ib 
A=- 

24 -CT: 24-c; k, 
2 ’ 

B=- C= 
2abk,c, bc;ctg(k,l)X’ bc;ctg(kll)z 

2k; 
D=- E = &-c:)=k, 

x- 
c,Wg(k,b) 

7dp; 2bc;c;cos(k,Z) 21c, 
, F _ _ W:-c:)=k, k, 

2bc;c;cos(k,@ 
(2.16) 

G _ (2&c:Mk,O (2c; - c:Mk,l)k, 
4bc;c; 

x, H=- 
4bc;c; zi 
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Then the right-hand sidesGin system (2.11) take the form 

f: = AG: + BG: + CG:, - 2ik, 

f;(y) = (i +Dsiny)G: (2.17) 

f i(x) = GG; + EG: + FG:, + (HG; + FG;)x2 

As above we will introduce auxiliary real functions h$ (j = 1,2,3,4,5) as a solution of the following 
systems, not containing the frequency parameter 

(2.18) 

Then by virtue of the linearity of the problem we have 

+l+ 
gf = (AG: + BG: + CG:2 -2ikl)hTj + G, 

( 
ih2j + Dhfj 

> 
+ 

+ (CC; + EG: + FG:,)hlj + (HG; + FG:)htj, j = 1,2,3 (2.19) 

By integrating Eq. (2.19) with respect to ]TJ ] < b forj = 1 and then with respect to 15 1 c 1 forj = 3 
and finally multiplying it by c2, integrating once more with respect toj = 3 for 16 I c 1, we obtain that 
the given solution leads to an algebraic system in the unknown variables Gi, G: and Gi2 containing, 
apart from constants A, B, . . . , H, the constants 

b 

Hi, = 
I h:,(W% Hi3 = j&(s)&, H;; = ~h;(S)S2&, k = 1, . ...5 (2.20) 

-b -I -I 

which do not depend on the wave numbers. 
We obtain the frequency-dependence in explicit form by solving this system for the unknown variable 

Gz. Note that the frequency only appears in the constant A, B, . . . , H (2.16). Since 
b 6 

jg;(Wdrl = ;W:- G,), ~&WI = ;(G:+ G,) (2.21) 
-b -b 

the required explicit solution for the scattering coefficients can be obtained in the final form, taking 
into account Eqs (1.6) and (2.14). 

3. THE LOW-FREQUENCY APPROXIMATION 

To obtain asymptotic results for limitingly low frequencies, we will first consider Eq. (2.14) for G; as 
kr + 0: the main term of the asymptotic form (both for the real part and for the imaginary part) equals 
[a ctg (krl) - ib]&!ubk,c& consequently, the required low-frequency approximation is 

(3.1) 

As regard the algebraic system for determining the constant Gi, ’ tt follows from Eq. (2.1) that the 
parameters C, D, F and H tend to zero as k: as kr + 0. Consequently, the constant Gi can be found 
from the 2 x 2 algebraic system, by solving which we obtain 

G = 2ik,[HT,(@i- l)-Zff,@:][(Y’f- l)(@i- 1)-Y;@:]-’ 

1 
@; = BH;, + ?H;, + EH;,, ‘I‘; = AH;,+GH,+,, k = 1,2,3 

(3.2) 
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We obtain the correct low-frequency approximation for the scattering coefficients by substituting the 
quantities GG obtained above into Eq. (2.21) and using expression (1.6). 

Compared to the results obtained previously [4, Eqs (4.20) and (4.21)] only the constant G; (3.1) in 
the low-frequency limit is expressed in elementary form. The determination of the constant Gz requires 
solutions of certain integral equations not containing the frequency parameter. 

4. NUMERICAL RESULTS 

A direct numerical method was applied to the system of integral equations (2.12) and (2.18), as a result 
of which values of all the constants H,; (j = 1,2,3) and Hi, H$, @l (j = 1, . . . ,5), appearing in the 
relation for determining constants G; and Gi, were obtained. Aluminium was taken as the elastic 
material, for which cl = 6200 M/S, c2 = 3080 M/S (so that ski = (c2/c1)ak2 6 ak2/2 c 3/2). 

The behaviour of the reflection coefficient as a function of frequency in the single-mode regime (1.5) 
for the case of square obstacles b/u = l/u = l/2 is shown in Fig. 2. The solid curve corresponds to the 
explicit formula obtained above in the single-mode approximation, namely: the quantity ] R ] as a function 
of ukI is taken according to relations (1.6) and (2.21). The dashed curve shows the low-frequency 
approximation. The dash-dot curve corresponding to the exact solution derived by the direct numerical 
method [2, line I in Fig. 21 is also given. It is obvious that the low-frequency approximation for ] R 1, 
derived in the present paper, is much more exact than the one previously obtained [2, line 4 in Fig. 21 
and it also has a true asymptotic behaviour at limitingly low frequencies. 
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In Fig. 3 we show the single-mode approximation for the propagation constant as a function of the 
frequency for three particular values of the relative aperture b/u; for all the curves l/a = l/2. Apart from 
the obvious fact that an array with a smaller aperture produces less transmission, we note that a 
comparison of the curve for b/a = l/2 in Fig. 3 with the solid curve in Fig. 2 shows extremely strict 
satisfaction of the well-known energy balance relation ]R ( 2 + ] T] 2 = 1 in the single-mode case [2,6]. 
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